

Cardiovascular physiology and pathophysiology at high altitude

Jean-Paul Richalet, Eric Hermand, François Lhuissier

▶ To cite this version:

Jean-Paul Richalet, Eric Hermand, François Lhuissier. Cardiovascular physiology and pathophysiology at high altitude. Nature Reviews Cardiology, 2023, 10.1038/s41569-023-00924-9. hal-04243067

HAL Id: hal-04243067 https://hal.science/hal-04243067

Submitted on 17 Oct 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. 18 4

5

7

Cardiovascular physiology and pathophysiology at high altitude

6 Jean-Paul Richalet, Eric Hermand & François J. Lhuissier

- 8 ¹Hypoxie et Poumon, Université Sorbonne Paris Nord, INSERM U1272, Paris, France.
- 9 ²Unité de Recherche Pluridisciplinaire Sport Santé Société, ULR 7369-URePSSS, Université Littoral Côte d'Opale, Université Artois,
- 10 Université Lille, CHU Lille, Dunkirk, France.
- 11 e-mail: richalet@univ-paris13.fr
- 12

13 Abstract

14 Oxygen is vital for cellular metabolism; therefore, the hypoxic conditions encountered at high altitude 15 affect all physiological functions. Acute hypoxia activates the adrenergic system and induces tachycardia, 16 17 whereas hypoxic pulmonary vasoconstriction increases pulmonary artery pressure. After a few days of exposure to low oxygen concentrations, the autonomic nervous system adapts and tachycardia decreases, 18 thereby protecting the myocardium against high energy consumption. Permanent exposure to high altitude 19 induces erythropoiesis, which if excessive can be deleterious and lead to chronic mountain sickness, often 20 associated with pulmonary hypertension and heart failure. Genetic factors might account for the variable 21 prevalence of chronic mountain sickness, depending on the population and geographical region. 22 Cardiovascular adaptations to hypoxia provide a remarkable model of the regulation of oxygen 23 availability at the cellular and systemic levels. Rapid exposure to high altitude can have adverse effects in 24 patients with cardiovascular diseases. However, intermittent, moderate hypoxia might be useful in the 25 management of some cardiovascular disorders, such as coronary heart disease and heart failure. The aim 26 27 of this Review is to help physicians to understand the cardiovascular responses to hypoxia and to outline some recommendations that they can give to patients with cardiovascular disease who wish to travel to 28 high-altitude destinations. 29

- 30
- 31
- 32

33 Key points

Acute exposure to high altitude stimulates the adrenergic system, increasing heart rate and cardiac
 output; although blood pressure remains stable, pulmonary artery pressure increases owing to hypoxic
 pulmonary vasoconstriction.

Prolonged exposure to high altitude induces a decrease in maximal heart rate through desensitization of
the adrenergic pathway, as a protective mechanism against environmental conditions of low oxygen
availability.

Long-term exposure to high altitude results in cardiac adaptations with no obvious dysfunction; stroke
volume is slightly reduced owing to decreased left ventricular filling volume secondary to right
ventricular overload.

43 • High-altitude natives can develop chronic mountain sickness, associated with erythropoiesis,

44 pulmonary hypertension and right heart failure, although genetic adaptations to hypoxia have been found

45 in Tibetan and Ethiopian populations.

• Patients with cardiovascular diseases can be at increased risk of adverse events at altitudes above 2,500

47 m, owing to hypoxaemia, high adrenergic activity and pulmonary hypertension.

Intermittent, moderate hypoxia might be useful in the conditioning of patients with cardiovascular
diseases, such as coronary heart disease and heart failure.

50

51 Introduction

The term hypoxia has arisen in the public sphere for two reasons in the past 5 years — the awarding of 52 53 the Nobel Prize in Physiology or Medicine to Kaelin, Ratcliffe and Semenza in 2019 for "their discoveries of how cells sense and adapt to oxygen availability" and in the context of the coronavirus 54 55 2019 (COVID-19) pandemic. In the academic environment, hypoxia is an active topic of research. In April 2023, the search term 'hypoxia' produced more than 184,000 results in the PubMed database, with 56 the first dating from 1945 (ref. 1). However, interest in the effects of oxygen deprivation on living 57 organisms began in the mid-nineteenth century, when scientists working in high-altitude regions mainly 58 used the terms anoxia or anoxaemia. A clear, clinical distinction between anoxia and hypoxia was first 59 made by Carl Wiggers in 1941 (ref. 2). Hypoxia is a decrease in oxygen and is variable with time and 60 localization in the body, whereas anoxia is the absence of oxygen. This contrast illustrates the concept of 61 homeodynamics that defines living organisms as complex systems in a state of permanent instability, 62 exposed to environmental and internal perturbations³. 63

High-altitude environments are characterized by various physical constraints, including cold temperatures 64 65 and an increased level of ultraviolet radiation. However, the most demanding condition is hypoxia owing to the progressive decline in barometric pressure (Fig. 1). The oxygen pressure in the inspired air (PiO_2) is 66 given by the following equation: $PiO_2 = FiO_2 \times (Pb - P_H 2 O)$, in which FiO_2 is the fraction of oxygen in 67 the inspired air, Pb is the barometric pressure and $P_{\rm H}2$ O is FiO₂ does not depend on altitude and currently 68 equals 0.2093 (20.93%), but this value has fluctuated since the formation of the Earth. For example, 300 69 70 million years ago, FiO₂ was around 0.30 (30%) and this relatively 'hyperoxic' environment favoured the development of large insects without a circulatory system transporting oxygen⁴. Conversely, 250–150 71 million years ago, FiO₂ fell to between 0.10 and 0.15 (10–15%). This relatively 'hypoxic' environment 72 might have affected the size and metabolism of living organisms and could even partly explain the 73 concomitant catastrophic mass extinction event at the end of the Triassic period^{4,5}. FiO₂ then 74 progressively rose to present-day values. The evolution of FiO_2 is interesting and might explain why 75 living organisms have evolved various strategies to cope with hypoxia or hyperoxia. 76

High-altitude regions above 2,500 m are found in South America (Andean countries), North America 77 (Rocky Mountains and Alaska), Europe (Alps and Pyrenees), Africa (Atlas and East African plateaux) 78 and Asia (Himalayas and Tibetan plateau). Isolated peaks >4,000 m above sea level can be found in 79 Antarctica, Indonesia and Japan. Worldwide, more than 40 million people live at altitudes above 2,500 m 80 and are exposed to chronic hypoxia, whereas an undetermined number of people are exposed to acute 81 hypoxia for leisure or work activities. Chronic intermittent hypoxia occurs when an individual spends a 82 few days at high altitude followed by a few days at sea level, and this pattern is repeated regularly, as is 83 the case for miners in South America. Billions of people who travel by air are potentially exposed to a 84

pressurized cabin environment corresponding to a maximum altitude of 2,400 m. Therefore, a wide
variety of exposure times — from a few minutes or hours to years — will trigger an array of
physiological and pathological responses to hypoxia.

Physiological adaptations to hypoxia include cardiovascular, respiratory, metabolic, haematological and endocrine responses. In this Review, we focus on cardiovascular adaptations to both acute and chronic exposure to high altitude. We also discuss the effects of hypoxia in the setting of various cardiovascular diseases (CVDs) and outline some guidance for advising patients with CVD who wish to travel to highaltitude destinations (Box 1). In addition, we briefly explore the role of hypoxic preconditioning in health and disease.

Fig. 1 | **Altitude, barometric pressure, air density and inspired oxygen pressure.** With increasing altitude, air density, barometric pressure (Pb) and inspired oxygen pressure (PiO₂) decrease. PiO₂ is given by the equation PiO₂ = FiO₂ × (Pb – P_{H_2O}), in which FiO₂ is the fraction of oxygen in the inspired air and P_{H_2O} is the water pressure in the upper airways. P_{H_2O} does not vary with altitude and is equal to 47 mmHg for a body temperature of 37 °C. Similarly, FiO₂ does not vary with altitude and is equal to 0.2093 (20.93%).

- 94
- 95

96 **Physiological responses**

97 The physiological effects of hypoxia have been studied using either hypobaric hypoxia (using high-98 altitude environments or hypobaric chambers) or normobaric hypoxia (by breathing hypoxic gas 99 mixtures). When PiO_2 is the same for each method, no physiologically significant differences between 100 these experimental approaches have been observed⁶.

101 Oxygen is vital for all human cells and, therefore, hypoxic conditions affect all physiological functions.

102 Every cell can be considered to be an oxygen sensor owing to the presence of genetic sequences known as

103 hypoxia-responsive elements. In acute hypoxia (minutes to hours), the activation of these elements

104 triggers the expression of various factors, leading to the stabilization of hypoxia-inducible factors (HIF1, 105 HIF2 and HIF3). In turn, HIFs induce the expression of messengers and hormones (such as erythropoietin, vascular endothelial growth factor and glucose transporters) involved in the physiological 106 response to hypoxia⁷. Cell function can also be directly affected by hypoxia through the activation or 107 inhibition of ion channels, such as K^+ channels for chemoreceptors and Ca^{2+} channels for smooth muscle 108 cells⁸. Peripheral chemoreceptors are the first sensors to be challenged by a hypoxaemic stimulus, 109 110 triggering immediate ventilatory (hyperventilation) and cardiac (tachycardia) responses via the medulla oblongata. The vascular response to hypoxia is variable, depending on the site of action. Hypoxia induces 111 vasoconstriction in the pulmonary vessels and vasodilatation in the peripheral circulation (Fig. 2). 112

With prolonged exposure to hypoxia (days to weeks), other adaptive responses occur, such as 113 114 downregulation of adrenergic receptors, changes in the acid-base balance leading to increased excretion 115 of bicarbonates, stimulation of erythropoiesis via erythropoietin, changes in the secretion of various hormones (for example, an increase in catecholamine and corticosteroids) and inhibition of the renin-116 117 angiotensin-aldosterone system (RAAS). These integrated responses (Fig. 2) can preserve sufficient delivery of oxygen to all cells⁹. However, because maximal oxygen consumption during exercise 118 irremediably decreases with increasing altitude, physical performance becomes impaired from ~800 m, at 119 least in endurance-trained athletes¹⁰. Cognitive function also becomes impaired, but only at much higher 120 121 altitudes (>6,000 m). Despite the rapid and integrated physiological response to hypoxia, if the stimulus is 122 too severe or the metabolic demand too high, the balance between oxygen supply and consumption 123 becomes altered and pathological events can occur. Conditions such as acute mountain sickness and 124 pulmonary or cerebral oedema usually manifest during the first hours or days of exposure to altitude 125 (mainly >2,500 m). The severity of these conditions can vary depending on the peripheral chemosensitivity of an individual to hypoxia¹¹ and the intensity of hypoxia-induced pulmonary 126 hypertension¹². 127

With chronic exposure to hypoxia (months, years or lifetime), stabilized erythropoiesis generally contributes to permanent acclimatization to life in hypoxia. However, in some cases of chronic mountain sickness (CMS; also known as Monge disease), excessive erythropoiesis can lead to an increase in blood viscosity, thrombosis, pulmonary hypertension and heart failure in some natives of high-altitude environments¹³.

133

134 Cardiovascular responses

The cardiovascular system has a major role in the integrated response to hypoxia (Table 1), involving two mechanisms: centrally mediated activation of the adrenergic system and a direct peripheral effect on the cells of the heart and blood vessels. Activation of medullary adrenergic centres is driven by input from the carotid chemoreceptors that are sensitive to hypoxaemia¹⁴. The whole sympathetic nervous system is activated, as evidenced by an increase in plasma and urine catecholamine concentrations¹⁵. An increase in arterial plasma catecholamine levels has been consistently observed with prolonged hypoxia¹⁶. Activation of the adrenergic system has also been demonstrated by increased activity in the peroneal adrenergic nerves¹⁷.

 G_s and G_i proteins that couple the β -adrenergic receptors to adenylate cyclase and activate or inhibit 143 144 this enzyme, respectively, have been shown to have a crucial role in the downregulation of the adrenergic system in hypoxia (Fig. 3). In hypoxia, G_s activity is reduced, whereas G_i expression is increased, leading 145 to inhibition of adenylate cyclase activity and, ultimately, a reduction in ion channel activity and heart 146 rate¹⁸. β-Arrestin 2 could have an important role in regulating pathways involved in the desensitization 147 and internalization of G-protein-coupled receptors observed in hypoxia and has been explored as a 148 potential target for treating heart failure¹⁹. Interestingly, the heart is not the only organ in which hypoxia 149 induces desensitiza-tion of G-protein-coupled receptors. Renal handling of calcium by parathormone, 150 151 control of growth hormone secretion by hypothalamic

factors, muscle lactate release and adipose tissue lipolysis are also affected, suggesting a general
 mechanism of adaptation to hypoxia¹⁴.

154

155 **The heart**

156

157 Heart rate.

The predominance of the adrenergic system at high altitude has been highlighted by a study of heart rate variability, in which hypoxia induced a decrease in R–R interval and an increase in the low-frequency to high-frequency ratio, an index of sympathovagal balance²⁰. With acute exposure to high altitude, heart rate at rest and after moderate exercise increases and then progressively declines with acclimatization, but never returns to sea-level basal values²¹. The 'mirror' pattern of variation in resting heart rate and arterial oxygen saturation (SaO₂) illustrates the close relationship between hypoxaemia and adrenergic activation in acute and prolonged hypoxia (Fig. 4).

Although heart rate with moderate exercise initially increases at altitude, heart rate at maximal exercise is slightly reduced in acute hypoxia and decreases significantly with prolonged (>24 h) exposure to high altitude. The decrease in heart rate at maximal exercise has been observed in many studies conducted in the field and in simulated conditions²² (Fig. 5). Both sympathetic and parasympathetic systems have been explored to find a physiological explanation for this decrease in maximal heart rate. The most convincing evidence is that β -adrenergic receptors are downregulated. This mechanism is well known in pharmacology — when an agonist is consistently elevated, the corresponding receptor is downregulated, 172 leading to desensitization of the whole pathway as an adaptive phenomenon against excessive 173 stimulation. Studies in animals^{23–26} and in humans²⁷ have confirmed this hypothesis. Moreover, in a study 174 of six healthy individuals, cardiac uptake of iodine-123 metaiodobenzylguanidine (¹²³I-MIBG) was 175 reduced after 1 week of exposure to an altitude of 4,350 m, supporting the hypothesis that hypoxia 176 reduces adrenergic neurotransmitter reserve in the myocardium and alters endothelial cell function²⁸.

The parasympathetic system has been investigated in only a few studies, mainly through muscarinic 177 receptor blockade by atropine or glycopyrrolate, suggesting that a hypoxia-induced increase in 178 parasympathetic activity might contribute to the decrease in heart rate at exercise in prolonged hypoxia^{29–} 179 ³¹. In animal models, the increase in parasympathetic effects on the heart has been related to the 180 upregulation of muscarinic receptors^{23,24,32}, implying a decrease in centrally mediated activation of the 181 parasympathetic system, as a mirror effect of adrenergic activation with downregulation of β -receptors. A 182 causal link between the observed decrease in maximal heart rate and the decrease in exercise performance 183 at altitude has been debated but has never been clearly demonstrated. 184

A model of myocardial oxygenation with exercise at increasing altitudes has demonstrated that the 185 decrease in heart rate at maximal exercise is beneficial — by limiting cardiac oxygen consumption when 186 oxygen availability is reduced, adequate myocardial oxygenation is maintained²² (Fig. 6). This 187 remarkable autoregulation of oxygen handling protects the heart from ischaemic events in extreme 188 conditions in which arterial P_02 is ~30 mmHg (Fig. 4). Indeed, no cases of myocardial infarction or 189 angina pectoris have ever been reported in healthy individuals exercising at altitudes >8,000 m (ref. 33). 190 The preservation of myocardial function in healthy people exposed to hypoxia can be considered in 191 parallel with the use of β-blockers in patients with heart failure. Interestingly, a polymorphism in G-192 193 protein-coupled receptor kinase 5 (*GRK5*) that is common among African American individuals improves 194 survival from heart failure, supporting the role of G proteins in the preservation of heart function at high altitude³⁴. 195

Box 1

Recommendations for patients with cardiovascular diseases travelling to high-altitude regions

All patients

- Be aware of potential interactions between current medication and acetazolamide, if prescribed.
- Consider the presence of comorbidities.
- Consider the availability of medical facilities at destination.

Coronary artery disease

- Travel not advisable until at least 6 months after a cardiac event.
 Travel advisable if no electrocardiographic abnormalities are
- present during the stress test.
- Travel advisable if destination is ≤4,200 m above sea level (lower threshold if additional cardiovascular risks are present).
- No vigorous exercise at altitude.

Heart failure

- NYHA class I–II: travel advisable if destination is≤3,500 m above sea level.
- NYHA class III: travel advisable if destination is ≤3,000 m above sea level.
- NYHA class IV: travel to high-altitude destinations is not advisable.

Arrhythmias

- For patients with serious ventricular arrhythmias, travel advisable if destination is ≤3,500 m above sea level.
- Travel advisable for patients with other arrhythmias.

Cyanotic heart disease or right-to-left shunt

Travel not advisable, unless the patient has been surgically treated.

Systemic hypertension

- Travel not advisable for patients with uncontrolled or severe hypertension (>180/110 mmHg).
- Travel advisable for patients with stabilized hypertension.

Pulmonary hypertension

- Travel not advisable if destination is>2,000 m above sea level.
- If travel cannot be avoided, use of supplemental oxygen is required.

196

197

198 Cardiac dimensions and function.

Cardiac output and stroke volume have been studied in various normobaric and hypobaric hypoxic 199 conditions. Cardiac output increases at altitude, mainly owing to the increase in heart rate. Stroke volume 200 decreases slightly, as measured during Operation Everest II when stroke volume decreased by 14% at rest 201 and after moderate exercise (60 W) at 7,620 m³⁵. This change is not due to a decrease in venous return to 202 the heart, as argued by some researchers³⁶, because blood volume is maintained (the decrease in plasma 203 volume is compensated for by an increase in red cell volume). The decline in stroke volume is actually 204 caused by a slight reduction in the end-diastolic volume of the left ventricle as a consequence of increased 205 pressure in the right ventricle linked to elevated pulmonary artery pressure (PAP). This mechanical effect 206 of high right ventricular (RV) pressure on the interventricular septum can slightly impair left ventricular 207 (LV) filling. However, these mechanisms do not significantly impair cardiac function. Acute moderate 208 normobaric hypoxia (FiO₂ = 14.4%) has been shown to attenuate exercise-induced increases in stroke 209 volume and cardiac output³⁷. Stroke volume reached a plateau earlier in hypoxia than in normoxia³⁷. 210 suggesting a slight impairment in cardiac filling related to a decrease in LV diastolic function³⁸ or to 211 impaired RV function owing to elevated pulmonary vascular resistance³⁹. 212

In healthy individuals, cardiac inotropic function is not altered at altitude, even at extreme elevations, as shown by normal or even augmented LV ejection fraction^{35,38}. Endurance athletes intermittently exposed (12 h per day for 13 days) to simulated altitude (2,500– 3,000 m) showed a slight increase in the ratio of RV-to-LV diameter on echocardiography, suggesting minor RV dilatation without an alteration in contractile function⁴⁰. Among healthy volunteers, LV mass (adjusted for changes in the body surface area) decreased by 11% after a 17-day trek to 5,300 m, but returned to pre-trek values after 6 months⁴¹. 219 No change in LV or RV ejection fraction occurred, but a slight decrease in diastolic function was reported⁴¹. In Chilean soldiers⁴² and miners⁴³ intermittently exposed to altitudes between 3,550 m and 220 4,600 m for 2.5–12.0 years, minor RV hypertrophy was observed and PAP was elevated (>25 mmHg in 221 4% of the military population). During a simulation of ascent to 8,848 m (Operation Everest III (COMEX 222 '97)), cardiac function was assessed using a combination of M-mode and 2D echocardiography, with 223 continuous and pulsed Doppler at 5,000, 7,000 and 8,000 m⁴⁴. On ascent to altitude, aortic, left atrial and 224 LV end-systolic diameter fell regularly. Mitral peak E velocity decreased, peak A velocity increased and 225 the *E*/A ratio decreased. Systolic PAP showed a progressive and constant increase up to 40 mmHg at 226 8,000 m⁴⁴. This study confirmed the elevation of PAP and the preservation of LV contractility at high 227 altitude. A modification in LV filling pattern was observed, with decreased early filling and an increased 228 contribution from atrial contraction, without elevation of LV end-diastolic pressure³⁸. In another study. 229 lowlanders arriving at high altitude (3,750 m) had an increase in mean PAP (13–22 mmHg) and altered 230 RV and LV diastolic function, although RV systolic function was maintained⁴⁵. After a 10-day period of 231 acclimatization to high altitude, PAP (measured at 4,850 m) increased slightly (26 mmHg) without further 232 changes in cardiac function. These observations confirm that healthy individuals exposed to mild 233 hypoxia-induced pulmonary hypertension maintain systolic function, despite a slight impairment in 234 235 ventricular filling mechanisms.

Cardiac electrical activity is not significantly modified by exposure to hypoxia in healthy individuals. However, a decrease in the amplitude of QRS and T waves on the electrocardiogram has been observed during moderate exercise in hypoxia, when compared with normoxia for the same heart rate⁴⁶. These changes have no clinical implication but might reflect a slight hypoxia-induced decrease in ion exchange in cardiomyocytes.

Fig. 2 | **Physiological effects of acute hypoxia.** Hypoxia induces the expression and translation of genes with hypoxia-responsive elements, which in turn trigger the expression of various factors that lead to the stabilization of hypoxia-inducible factors (HIFs). HIFs can induce the production of messengers or hormones involved in physiological reactions to hypoxia, such as erythropoietin (EPO), endothelin 1 (ET1), glucose transporters (such as GLUT1), nuclear factor-kB (NF-kB), nitric oxide synthases (NOS), platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF). Hypoxia also activates reflex loops, independently of HIF stabilization. Peripheral chemoreceptors are the first sensors of the hypoxaemic stimulus, triggering immediate ventilatory (hyperventilation) and cardiac (tachycardia) responses

to hypoxia. The vascular response to hypoxia is variable, depending on the site of action. Hypoxia induces vasoconstriction in the pulmonary vessels and vasodilatation in the rest of the peripheral circulation. Other responses occur after prolonged exposure to hypoxia (hours to days), such as increased angiogenesis and endothelial cell permeability, stimulation of erythropoiesis via EPO, increased inflammation, decreased Na⁺ alveolar reabsorption by pneumocytes and increased diuresis via inhibition of the renin–angiotensin– aldosterone system (RAAS) and stimulation of atrial natriuretic peptide (ANP) and antidiuretic hormone (ADH). Iα-OHase, 25-hydroxyvitamin D Iα-hydroxylase; I8-OHase, steroid 18-hydroxylase (also known as aldosterone synthase); ACE, angiotensin-converting enzyme.

241 242

243 Myocardial circulation.

As discussed, the healthy myocardium shows remarkable adaptation to hypoxia via a reduction in 244 maximal heart rate. In addition, hypoxia-induced coronary vasodilatation occurs, mediated by vasoactive 245 metabolites (such as adenosine and nitric oxide (NO)) or by proton accumulation⁴⁷. A coronary flow 246 reserve of 35% was found at maximal exercise in 12 healthy individuals breathing 12% oxygen 247 (equivalent to an altitude of 4,650 m), although 1% of energy demand was covered by anaerobic 248 metabolism⁴⁸. In another study, during moderate exercise (83 W) at 4,500 m, coronary reserve was 249 preserved among 10 healthy individuals, but was reduced by 18% in 8 patients with coronary artery 250 disease $(CAD)^{49}$. 251

252

253 Systemic blood pressure

254 Centrally mediated activation of the adrenergic system has a vasoconstrictive effect on peripheral α -255 adrenergic receptors, which can lead to increases in peripheral vascular resistance and blood pressure. 256 Moreover, an increase in heart rate and cardiac output can contribute to an increase in blood pressure 257 independently of vascular resistance. Conversely, hypoxia has a direct relaxing effect on vascular smooth 258 muscle cells, leading to vasodilatation and a decrease in vascular resistance. The overall effect depends on

the time of exposure and the intensity of the hypoxic stimulus.

260 The effect of acute hypoxia on blood pressure illustrates these dichotomic responses between central and

261 peripheral mechanisms. Hypoxia-induced activation of the autonomic nervous system is a potent activator of central sympathetic activity, triggered by augmented oxygen-related activity of the carotid 262 chemoreceptors^{50,51}, which in turn induces a peripheral vasoconstrictor response via sympathetic-263 dependent contraction of vascular smooth muscle cells⁵¹. This centrally mediated mechanism is 264 counterbalanced by the peripheral action of hypoxaemia, which stimulates the production and release of 265 local vasodilatory factors such as endothelial NO^{52-54} , thereby promoting global vasodilatation in various 266 (coronary, cerebral, splanchnic and skeletal) vascular beds⁵⁵. In clinical tests performed to predict 267 susceptibility to acute mountain sickness, a slight rise in systemic blood pressure was observed in hypoxia 268 (FiO₂ = 11.5%), compared with normoxia, for the same level of exercise intensity⁵⁶⁻⁵⁸. However, a 269 concomitant increase in heart rate also occurred, under the influence of hypoxia-dependent sympathetic 270 activation, leading to an increase in cardiac output⁵⁹ and masking the effects of hypoxia on centrally and 271 peripherally driven blood pressure. Therefore, during steady-state exercise at moderate intensity, despite 272 the increase in blood pressure during hypoxia (versus normoxia) for a given power (watts), blood pressure 273 was lower in hypoxia (versus normoxia) for a given heart rate, when 'clamping' the adrenergic drive⁶⁰. 274 This finding confirms the superior effect of peripheral vasodilatory mechanisms over centrally driven 275 276 vasoconstriction on blood pressure. Adding physiological stress (such as exercise) to existing environmental stress leads to a further 'compensatory' systemic vasodilatation. These concomitant 277 mechanisms seem to provide superior outcomes compared with exercise-induced or hypoxia-dependent 278 vasodilatation alone⁵⁵. 279

Chronic exposure (months, years or lifetime) to high altitude requires multiple, additional physiological adaptations, which vary depending on the environment (such as altitude and climate) and the individual (genetics, lifestyle, socioeconomic factors and acclimatization)⁶¹. For example, in some studies, long term exposure to high altitude leads to a persistent increase in blood pressure^{59,62–65}, whereas in other studies, blood pressure remained stable⁶⁶ or even decreased⁶⁷. In general, peripheral vasodilatation is crucial to preserve the blood flow to oxygen-demanding muscles in hypoxia in the presence of centrally driven vasoconstriction. Table 1 | Cardiovascular modifications induced by hypoxia

Parameter	Acute hypoxia	Prolonged hypoxia	Long-term high-altitude residence	Refs.
Adrenergic system	Activated	Activated and then downregulated	Activated or downregulated, depending on ethnic origin of the individual	14-18,20,23-27,171
Heart rate at rest	Increased	Return towards sea-level values	Depends on the ethnic origin of the individual	21
Maximal heart rate	Stable	Decreased	Lower than natives of sea-level regions	22
Cardiac output	Increased	Return to sea-level values	Depends on the ethnic origin of the individual	35,37,38
Stroke volume	Stable	Slightly decreased	Decreased in individuals with CMS	35,37,38
RV mechanics	Increase in RV volume	Increase in RV volume	Hypertrophy, especially in individuals with CMS	39,40,42,43,45
LV mechanics	Increase in systolic function	Slight decrease in LV filling, no change in LV ejection fraction	Decrease in LV filling	35,37,38,41,45
Blood pressure	Increase in parallel with heart rate	Increase in parallel with heart rate	Stable or increased	50-54,172
Pulmonary artery pressure	Increased	Increased	Increased	42,43,45,69-71
Cerebral circulation	Increased blood flow	Blood flow returns to normal	Stable	81,82
Renal circulation	Decreased renal blood flow and increased diuresis	Decreased effective renal blood flow	Decreased renal blood flow, especially in individuals with CMS	75-80
Myocardial circulation	Increased blood flow	Decreased coronary reserve	No data available	47-49
Muscular circulation	Increased blood flow	Increased blood flow	No data available	55,83-88,173

287

CMS, chronic mountain sickness; LV, left ventricular; RV, right ventricular.

288

289 The peripheral circulation

290 Lungs.

Within minutes of exposure to hypoxia, pulmonary vasoconstriction leads to a rapid increase in 291 pulmonary vascular resistance and mean PAP^{68,69}. Exercise aggravates the hypoxia-induced increase in 292 pressure, which reaches 54 mmHg during maximal exercise at 8,848 m⁷⁰. Pulmonary vasoconstriction 293 involves inhibition of oxygen-sensitive K^+ channels, leading to depolarization of pulmonary artery 294 smooth muscle cells and activation of voltage-gated Ca^{2+} channels, Ca^{2+} influx and vasoconstriction⁷¹. 295 This process is immediately reversed by breathing oxygen. However, lowlanders exposed to high altitude 296 for 2–3 weeks develop pulmonary hypertension that is not completely reversed by breathing oxygen⁷⁰, 297 suggesting vascular remodelling of the pulmonary arterioles. This process involves the proliferation of 298 smooth muscle cells and thickening of the artery wall⁷². Pulmonary hypertension not only affects RV 299 function⁷³ but also limits exercise performance⁷⁴. 300

301

302 Kidneys.

The effects of acute hypoxia on renal plasma flow and glomerular filtration rate are limited. However, urine flow increases, probably through a combined effect of adrenergic stimulation and inhibition of the RAAS^{75,76}. Hypocapnia and alkalosis, resulting from hypoxia-induced hyperventilation, have an important effect on renal physiology by inducing a large increase in bicarbonate excretion. In a study from the Global REACH 2018 expedition, renal blood flow decreased by 14% after 1 day of exposure to 4,330 m, but was restored after 1 week of acclimatization, whereas glomerular filtration rate remained lower than that at sea level⁷⁷. With prolonged hypoxia, as haematocrit and blood viscosity increased, effective renal plasma flow decreased by 38% at 5,800 m (ref. 78) and by 39% at 6,542 m, whereas renal blood flow decreased by only 24% (ref. 79). In natives of high-altitude environments, a more severe reduction in renal plasma flow is observed, especially in patients with CMS⁸⁰.

313

314 Brain.

Cerebral blood flow increases with acute hypoxia. However, because hypoxia induces hyperventilation, the resulting hypocapnia has a direct vasoconstricting effect on the cerebral circulation, and cerebral blood flow returns to normal sea-level values after a few hours or days of hypoxic exposure⁸¹. At 8,000 m, a decrease in the transient hyperaemic cerebrovascular response has been observed, suggesting impaired cerebral autoregulation that could have a role in the genesis of the acute neurological deficits observed at extreme altitude⁸².

321

322 Skeletal muscle.

323 Exercising promotes various muscular vasodilatory processes, particularly by blunting sympathetic α -324 adrenergic vasoconstriction and inducing the release of NO⁵⁵. This response during exercise

in hypoxic conditions compensates for the increased sympathetic vasoconstrictor activity directed towards 325 skeletal muscle⁸³. Although the specific mechanisms of this effect are not fully understood, they are 326 thought to involve increased vasodilatation rather than reduced vasoconstriction in active locomotor 327 muscles⁵⁵. Other postulated mechanisms include augmented NO release, through β -adrenergic receptors 328 in the exercising limb^{84,85}, directly from the endothelium⁸⁶ or via shear stress activation of endothelial 329 cells⁸⁷. Adenosine might also contribute to the regulation of skeletal muscle blood flow by stimulating 330 prostaglandin and NO synthesis⁸⁸. These processes might be modulated by exercise intensity, the severity 331 and the duration of exposure to hypoxia, and by the mobilized muscle mass⁵⁵. 332

Fig. 3 | **Effects of hypoxia on cardiomyocytes.** Hypoxia induces an increase in the systemic levels of the agonists noradrenaline and adenosine. The increased noradrenaline and adenosine signalling in cardiomyocytes results in downregulation of β -adrenergic receptors (β -ARs) and the adenosine A₁ receptor (A₁R), upregulation of the muscarinic acetylcholine receptor M₂ (probably due to a decrease in acetylcholine release), a decrease in G_s protein activity and an increase in G₁ protein expression and, ultimately, a decrease in adenylate cyclase activity and production of cAMP. The decrease in cAMP negatively influences the control of automatism, contraction and relaxation of cardiomyocytes. The arrows indicate an increase or decrease in concentration or activity observed in hypoxia versus normoxia.

333 334

335 Adaptation in high-altitude natives

Cardiovascular adaptations to altitude in humans have been built through genetic modifications over 336 millions of years of evolution. However, some individuals living at high altitude still manifest deleterious 337 responses to hypoxia and develop conditions such as CMS. Strategies for adaptation to permanent living at 338 high altitude differ according to the population and geographical region. Indigenous Tibetans, who have 339 340 lived above 4,000 m for more than 40,000 years, seem to have the best profile of genetic adaptation to chronic hypoxia through changes in *HIF2* and *EGLN1* (also known as *PHD2*)⁸⁹. This population has low 341 SaO₂, but no excessive erythrocytosis or pulmonary hypertension. East African highlanders have 342 haemoglobin and SaO₂ levels similar to those of sea-level natives⁹⁰, and their phenotypic adaptation to 343 high altitude is still under investigation. Andeans, whose residence at high altitude dates to around 12,000 344 years ago, have a mixed genetic profile, with ethnic admixture with Europeans since the sixteenth 345 century⁹¹. Therefore, this population does not have a clear genetic advantage for living at high altitude, 346 with low SaO₂, high haemoglobin levels, elevated PAP and RV hypertrophy⁹². In a study of native 347 residents of La Paz, Bolivia (3,500-4,100 m), pulmonary artery hypertension was reversed after 348 prolonged residence at sea level or treatment with nifedipine⁹³. 349

350 A substantial proportion of the Andean population (15% in Cerro de Pasco, Peru; 4,300 m) develops CMS^{13} . This condition is characterized by excessive erythropoiesis and, sometimes, pulmonary 351 hypertension that can evolve towards right and global heart failure⁹⁴. Patients with CMS from Cerro de 352 Pasco have elevated mean PAP (34 mmHg) when compared with healthy high-altitude natives (25 353 mmHg) and sea-level residents (19 mmHg)⁹⁵. These patients also have RV enlargement but do not 354 develop impaired ejection fraction. However, the RV Tei index (myocardial performance index) was 355 356 increased in patients with CMS and in healthy high-altitude residents, suggesting early impairment of RV function⁹⁵. Moreover, patients with CMS seem to be at increased risk of developing cardiovascular events 357 compared with their healthy counterparts⁹⁶. In another study, a decrease in RV function at rest and during 358 exercise was also found in patients with CMS from La Paz when compared with healthy high-altitude 359 residents⁹⁷. However, the researchers suggest that the lower resting values for RV function in patients 360 with CMS could represent a physiological adaptation to chronic hypoxic conditions rather than impaired 361 RV function. 362

363 In Peruvian high-altitude natives, peripheral chemoreceptors can develop hyperplasia with ageing, leading to a blunted ventilatory response to hypoxia^{13,98}. Adrenergic activity was found to be increased, but β -364 adrenergic receptors were downregulated, similar to findings from sea-level natives exposed to prolonged 365 hypoxia⁹⁹. Plasma erythropoietin and soluble transferrin receptors are elevated, in line with excessive 366 erythropoiesis, resulting in frequent episodes of sleep apnoea and nocturnal oxygen desaturation. These 367 changes are reversed by administration of the carbonic anhydrase inhibitor acetazolamide¹⁰⁰. Systemic 368 arterial pressure has been studied in various high-altitude populations¹⁰¹. Native Tibetans have a higher 369 prevalence of hypertension than Han Chinese people living at the same altitude, perhaps because of 370 differences in genetics or nutrition¹⁰². Studies in Peruvian miners permanently living and working above 371 5,000 m showed normal blood pressure (continuously monitored over 24 h), despite a higher blood 372 viscosity owing to a high haematocrit $(>60\%)^{103}$. Moreover, Andean natives with CMS do not have an 373 excessive prevalence of hypertension⁹⁴. This finding raises the question of whether the peripheral 374 375 vasodilatory mechanisms that occur during acute hypoxia persist in chronic hypoxia. The data are scarce but indicate that these mechanisms are still present in native Tibetans, especially through augmented 376 endothelial NO production¹⁰⁴. However, the response might vary according to ethnicity, because NO-377 mediated cutaneous vasodilatation was found to be reduced in Peruvian high-altitude residents^{104,105}. 378 379 Other mechanisms of peripheral vasodilatation are still to be unravelled, but could include dampening of the vasodilatory effect of ATP or adenosine¹⁶ and excessive blood viscosity¹⁰⁶. 380

381 Genetic studies of high-altitude populations have been developed with two objectives: first, to identify 382 specific mutations that confer an evolutionary advantage for living at high altitude (comparing Andeans, 383 Tibetans or Ethiopians with sea-level natives); and second, to characterize genetic risk factors among

high-altitude natives who develop CMS. More than 1,000 genes encoding proteins involved in the 384 circulatory system, angiogenesis, erythropoiesis and oxygen transport could be associated with adaptation 385 or maladaptation to high altitude^{89,107,108}. In genome-wide association studies, the specific allele 386 frequency of several HIF pathway genes involved in the Tibetan pattern of adaptation, including EPAS1 387 and EGLN1, has been identified that might contribute to the low haemoglobin concentration observed in 388 Tibetans¹⁰⁹⁻¹¹¹. In Andeans, genetic studies suggest that positive selection has focused on the NO 389 pathways and the cardiovascular system¹¹². Studies of Ethiopian adaptation are scarce, but have identified 390 HIF-mediated oxygen-sensing pathways¹¹³, similar to those found in Tibetans and Andeans, suggesting 391 convergent evolution in populations living at high altitude. The VEGFA gene has been implicated in 392 cardiovascular maladaptation to hypoxia in Andeans¹¹⁴, and *AEBP2*, which has a role in erythropoiesis, 393 has also been proposed as a causal gene for CMS¹¹⁵. Other genes, such as the erythropoiesis regulator 394 395 SENP1 and the oncogene ANP32D, are also thought to be involved in the development of CMS in Andeans¹¹⁶. 396

Fig. 4 | **Heart rate and arterial oxygen saturation at rest during a simulation of ascent to 8,848 m.** The graph shows the heart rate and arterial oxygen saturation (SaO₂) at rest in individuals exposed to simulated altitudes from sea level to 8,848 m in a hypobaric chamber during a simulation of an ascent of

Mount Everest (Operation Everest III; COMEX '97)⁴⁴. The variations in resting heart rate and SaO₂ mirror each other, illustrating the tight relationship between hypoxaemia and adrenergic activation in acute and prolonged hypoxia.

397 398

399 High altitude and cardiovascular disease

400 Acute altitude illnesses: is the heart involved?

One of the first descriptions of acute forms of mountain sickness, proposed by Ravenhill¹¹⁷, mentioned a
'cardiac form of altitude illness' to describe what would later be called 'high-altitude pulmonary oedema'
(HAPE) by Houston¹¹⁸. However, the heart is not involved in any manifestation of altitude illnesses —
acute mountain sickness, HAPE or high-altitude cerebral oedema. From the circulatory viewpoint,

hypoxia-induced vascular leak is a common feature of all forms of altitude illnesses, owing to increased
capillary permeability, without any change in blood pressure. The increase in PAP owing to hypoxiainduced pulmonary vasoconstriction is one of the factors involved in the pathophysiology of HAPE,
together with endothelial dysfunction, alveolar epithelial dysfunction and inflammatory processes¹¹⁹.
Nobody has ever died from heart problems at the summit of Mount Everest (8,849 m), despite extremely
low arterial O₂ pressure (~30 mmHg) and high exercise intensities³³, probably because of the remarkable
autoprotective physiological process discussed earlier.

412

413 Advice on pre-existing cardiovascular diseases

Very few robust scientific data are available about the risks of exposure to high or very high altitude in patients with chronic CVD. Most studies have included a small number of patients and were performed under very different conditions, in terms of both altitude and methodology. Studies of patients with cardiovascular conditions that involve travel to, or hiking in, high-altitude regions far from medical facilities are unethical. For this reason, among others, recommendations are mostly based on the consensus of experts and limit the highest advisable altitudes in the travel guidance for patients with preexisting cardiovascular conditions^{120–122} (Box 1).

Although the healthy heart is not directly involved in acute altitude illnesses, high altitudes can be 421 422 challenging for those with CVD because exercising at a given intensity (such as walking uphill) is more demanding in hypoxia than at sea level. Because of the lower SaO₂ and the lower maximal exercise 423 424 capacity (VO₂ max) at altitude, the same physical activity requires a greater percentage of VO₂ max and, 425 therefore, a greater percentage of maximal heart rate and maximal cardiac output to deliver the same amount of oxygen to the myocardium¹²³. Therefore, clinical symptoms that would not appear, or appear 426 only during vigorous exercise, in normoxia could emerge during light-to-moderate exercise at high 427 428 altitude.

A basic knowledge of the physiology of hypoxia, and the pathophysiology of CVD, will help clinicians to provide appropriate advice to their patients with CVD before travel to high-altitude regions⁶¹. In general, the risk factors for patients with CVD at high altitude are:

432 • Impaired oxygen delivery, leading to increased hypoxaemia (respiratory conditions, severe or
433 insufficiently controlled heart failure and cyanotic congenital heart diseases).

434 • Pulmonary hypertension and right heart failure.

435 • Increased sympathetic activity (arrhythmias).

436 \cdot Reduced ischaemic threshold, owing to a higher heart rate for a given power output at exercise (CAD).

437

438 To evaluate the risk associated with a travel to high altitude for a patient with CVD (Box 1), the

physician should consider both the risk of complications of the cardiovascular pathology in hypoxia and 439 440 comorbidities (such as chronic obstructive pulmonary disease, anaemia, diabetes mellitus and obstructive sleep apnoea), which are common in these patients. Furthermore, they should be aware that medical 441 facilities are not easily accessible in isolated, high-altitude regions and inform their patients that treatment 442 is, therefore, likely to be delayed. Physicians should also consider the medications being taken by the 443 patient. For example, diuretics can lead to dehydration, and β-blockers will impair the physiological 444 increase in heart rate at altitude and reduce physical performance. If acetazolamide is prescribed to limit 445 the risk of high-altitude illness, interactions with other drugs, such as hypokalaemia with loop diuretics, 446 should be avoided. Physicians should also give their patients general recommendations about altitude 447 acclimatization; primarily that, for travel above 3,000 m, the daily gain in altitude should not exceed 400 448 m (refs. 56,58). Importantly, cardiovascular risks are increased when exposure to altitude is sudden, 449 450 without progressive acclimatization.

451

Fig. 5 | Parallel linear decrease in arterial oxygen saturation and heart rate at maximal exercise as a function of altitude. The graph shows the parallel linear decrease in arterial oxygen saturation (SaO_2) and heart rate (% of sea-level values) with increasing altitude during maximal exercise in individuals acclimated to hypoxia. The decrease in heart rate with increasing altitude has been observed in many studies conducted in the field and in simulated conditions. Both sympathetic and parasympathetic nervous systems are involved in this decrease in maximal heart rate. Downregulation of β -adrenergic receptors occurs, leading to desensitization of the pathway, as an adaptive phenomenon against excessive hypoxic stimulation. An increased parasympathetic effect on the heart might also contribute to the decrease in heart rate during exercise in prolonged hypoxia, via upregulation of the parasympathetic system, as a mirror effect of adrenergic activation with downregulation of β -adrenergic receptors. Adapted from ref. 22, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

Fig. 6 | **Myocardial venous oxygen saturation at maximal exercise with and without autoregulation of maximal heart rate.** The graph shows the calculated values of myocardial venous oxygen saturation (SvO₂) during maximal exercise as a function of altitude. The dark blue triangles show SvO₂ values re-calculated using the observed SvO₂ data (light blue squares), assuming that the value of maximal heart rate at altitude is identical to that at sea level. The decrease in maximal heart rate with increasing altitude limits cardiac oxygen consumption when oxygen availability is reduced, protecting the heart against ischaemic events. In the hypothesis of no decrease in maximal heart rate (dark blue triangles), myocardial SvO₂ would become negative at 8,000 m and above. Adapted from ref. 22, CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

453

454

455 Coronary artery disease.

Patients with reduced coronary reserve could be assumed to be at increased risk of myocardial ischaemia at high altitude. However, no significant differences in symptoms, heart rate or systolic function have been observed in patients with ischaemic heart disease compared with healthy individuals at 3,454 m¹²⁴ or 4,200 m¹²⁵. The 18% decrease in normal coronary reserve at 2,500 m⁴⁹ should be considered when interpreting these findings. In a study of nine patients with CAD exercising at 3,100 m, angina, ST segment depression or both occurred at the same product (heart rate × systolic blood pressure), but at lower workloads, than at sea level¹²⁶.

On the basis of these observations, patients with CAD who no longer show electrocardiogram abnormalities during an exercise test, at least 6 months after a cardiac event, can travel to altitudes up to 465 4,200 m (lower in the presence of comorbidities that increase cardiovascular risk). As a precaution, 466 vigorous exercise at altitude in these patients is contraindicated. Interestingly, one study of healthy individuals exposed to an altitude of 4,559 m showed that acetazola- mide increased the subendocardial
viability ratio, estimated on the carotid artery using a PulsePen tonometer¹²⁷. This finding suggests a
decreased risk of subendocardial ischaemia at altitude in healthy people but remains to be confirmed in
patients with ischaemic heart disease.

471

472 Heart failure.

Some researchers have studied the effects of high altitude (up to 3,454 m) in patients with heart failure
with ejection fraction <35%, with no cardiac events being reported^{128–130}. On the basis of these studies,
recommendations about travel to altitude for these patients depends on the NYHA score — no altitude for
NYHA class IV, up to 3,000 m for NYHA class III and up to 3,500 m for NYHA classes I and II¹²².

477

478 Arrhythmias.

Although no specific data are available about the occurrence of arrhythmias at high altitude, it is
reasonable to assume that the association between hypoxaemia and increase in adrenergic activity could
induce arrhythmias. Therefore, recommendations limit altitude travel to 3,500 m for patients with serious
ventricular arrhythmias¹²¹.

483

484 Congenital heart diseases.

Patients with cyanotic heart disease or right-to-left shunt (aggravated by pulmonary hypertension and increased right heart pressures) experience severe hypoxaemia at high altitudes. Therefore, travel to these regions should be avoided, unless the patient has been surgically treated¹³¹. Case reports of patients with patent foramen ovale suggest that right-to-left shunt might be aggravated at high altitude, and exerciseinduced arterial oxygen desaturation could, therefore, be a risk factor for HAPE¹³².

490

491 Systemic hypertension.

492 As discussed earlier, the systemic circulation is exposed to the opposing effects of centrally mediated vasoconstriction and locally mediated vasodilatation. The overall effect on blood pressure largely depends 493 on the duration of exposure and individual susceptibility⁶¹. Although some studies^{133,134} have shown a 494 greater increase in blood pressure at altitude in patients with hypertension than in healthy individuals, 495 other studies have not^{60,66}. To our knowledge, there is no evidence in the literature restricting travel to 496 497 altitude in patients with stable hypertension. Recommendations to avoid high altitude apply only to patients with uncontrolled or severe hypertension (systolic blood pressure >180 mmHg and/or diastolic 498 499 blood pressure >110 mmHg).

500

501 **Pulmonary hypertension.**

502 Given that hypoxic pulmonary vasoconstriction occurs in all individuals exposed to high altitude, patients 503 with pre-existing pulmonary hypertension are at high risk of right heart dysfunction or HAPE^{135,136}. 504 However, one randomized pilot study showed that patients with pulmonary hypertension can safely adapt 505 to an altitude of 2,000 m¹³⁷. The recommendation is to avoid travel to altitudes above 2,000 m and to use 506 supplemental oxygen if such travel cannot be avoided.

507

508 Hypoxic preconditioning

Hypoxic preconditioning refers to exposure to moderate hypoxia with the aim of increasing resistance to 509 subsequent severe hypoxia, and interest in the application of this technique in health and disease is 510 growing¹³⁸. Specific protocols that modulate stress level, duration of exposure and whether hypoxia is 511 continuous or intermittent have revealed some positive effects of hypoxic preconditioning in a wide 512 spectrum of pathologies, including age-dependent neurodegeneration¹³⁹, cerebral ischaemia^{140,141}, 513 hypertension¹⁴², obstructive sleep apnoea¹⁴³ and metabolic diseases^{144,145}. Hypoxic preconditioning can be 514 performed in actual high-altitude conditions, but individual control of physiological responses can be 515 improved in simulated conditions, such as in normobaric rooms or tents. 516

Evidence for the beneficial effects of moderate hypoxia comes from epidemiological data in 517 populations living permanently at moderate altitudes (~2,000–2,500 m), who have lower cardiovascular 518 mortality that populations living at sea level^{146–148}. Other chronic diseases, such as dyslipidaemia¹⁴⁹ and 519 diabetes¹⁵⁰, also have a reduced prevalence at altitude; however, mortality from chronic obstructive 520 pulmonary disease has been reported to be increased at high altitude¹⁵¹. Evidence for the benefits of 521 hypoxic preconditioning for CVD is accumulating^{152,153}. Among six male patients with CAD, myocardial 522 perfusion was increased after progressive intermittent hypoxia (4,200 m over 14 days)¹⁵⁴. Moreover, 523 short-term intermittent hypoxia (14-10% oxygen over 21 days) increased aerobic capacity and exercise 524 tolerance in 16 men aged 50–70 years with CAD¹⁵⁵. Intermittent hypoxia (2,700 m over 22 days) 525 526 increased cardiorespiratory capacity, exercise tolerance and quality of life in patients with severe heart failure¹⁵⁶. Importantly, no adverse effects occurred among 45 patients with stable ischaemic LV 527 dysfunction exposed to altitudes up to 3,000 m, although their maximal exercise capacity was 528 reduced^{128,130}. 529

The underlying mechanisms of hypoxic preconditioning are not yet fully understood, but could involve several distinct processes and their potential interactions, through changes in HIF1 and its target genes⁷. Possible processes involved include neuroprotection and cardioprotection^{157,158}, NO synthesis and mitochondrial function¹⁵⁹, downregulation of apoptosis¹⁶⁰, erythropoietin-related protection^{161,162}, ROS formation⁶¹ and upregulation of angiogenic growth factor^{7,163–165}. The obstructive sleep apnoea syndrome,

an existing pathological model of intermittent hypoxia, could help to adjust future modalities of hypoxic 535 536 preconditioning. When approved are brief (<60 s), recurrent cycles of hypoxia-reoxygenation lead to a marked decrease in SaO₂, an exacerbation of sympathetic activation and subsequent cardiovascular 537 dysfunction¹⁶⁶. By contrast, preliminary studies on the positive effects of intermittent hypoxia rely on a 538 more moderate hypoxic stress during longer intervals, which could provide useful guidelines for further 539 investigations^{138,142,167,168}. Additional metrics could be used to accurately quantify the 'hypoxic load' 540 experienced by patients or healthy individuals in a hypoxic environment. The most widely used 541 assessment is to integrate the FiO_2 curve over time. Although simple to implement, this method does not 542 represent tissue oxygenation at a cellular level during hypoxia. Although not perfect, a similar approach 543 using the integration of SpO₂ over time would be closer to physiological reality and would eliminate the 544 effects of chronic adaptation to hypoxia during hypoxic protocols¹⁶⁹. 545

Glossary

Anoxia

The absence of oxygen from the tissues of a living organism.

Duration of exposure to hypoxia

Acute: minutes or hours; prolonged: days or weeks; chronic: months, years or lifetime.

Hypobaric hypoxia

Decrease in oxygen pressure owing to a decrease in barometric pressure.

Hypoxaemia

Decrease in oxygen pressure in blood compared with normal value at sea level (100mmHg).

Hypoxia

Decrease in oxygen pressure in a given milieu (such as ambient air, lung alveoli, blood or cells).

Normobaric hypoxia

Decrease in oxygen pressure owing to a decrease in the fraction of oxygen in the inspired air.

546

547

548 Conclusions

Travel to high altitude exposes an individual to hypoxia. However, advances in high-altitude research 549 have demonstrated that the cardiovascular system deploys some efficient mechanisms of acclimatization 550 to oxygen deprivation, and the healthy heart adapts to hypoxia, even when severe, with preservation of 551 systolic function and only minor impairment of LV and RV diastolic function. With acclimatization, 552 desensitization of the adrenergic system, together with an increased parasympathetic influence, leads to a 553 decrease in maximal heart rate and protection of the myocardium against potentially harmful energy 554 disequilibrium. In the peripheral and pulmonary circulations, hypoxia induces vasodilatation and 555 vasoconstriction, respectively, leading to minimal changes in systemic blood pressure but an increase in 556 557 PAP that can contribute to high-altitude pulmonary oedema.

558 Permanent exposure to hypoxia, as in natives of high-altitude environments, can lead to CMS 559 characterized by excessive polycythaemia, which is frequently associated with pulmonary hypertension 560 and heart failure. Genetic studies have revealed protective adaptations of some populations (such as

Tibetans and Ethiopians) to these pathological manifestations. Altogether, adaptation to hypoxic 561 562 constraints is achieved through a balance between activation of compensatory mechanisms (such as hyperventilation, tachycardia and erythropoiesis) through upregulation mechanisms and inhibition of 563 neurohormonal or humoral factors (such as G-protein-coupled receptors, NO and the RAAS), protecting 564 the organism from high-energy-consuming processes¹⁷⁰ (Fig. 7). Although this complex system can fail 565 and lead to pathological manifestations, it constitutes a remarkable example of homeodynamics that 566 warrants further exploration, especially to unravel the molecular mechanisms underlying these adaptation 567 568 processes.

Our improved understanding of the effect of altitude hypoxia on the cardiovascular system will allow 569 better documented and evidence-based advice to patients with pre-existing CVDs. All CVDs are 570 aggravated by increased adrenergic activity or associated with pulmonary hypertension, and hypoxaemia 571 572 (right-to-left shunt) will also be exacerbated. Moderate altitude, up to 2,500 m, does not seem to be harmful for most patients with CVD. However, as altitude increases, patients will present an ischaemic 573 574 threshold for a lower power output during exercise. Progressive acclimatization is necessary to avoid acute adverse effects on the cardiovascular system, and advice should be given in the context of disease 575 576 severity and the expected level of exercise intensity. Intermittent exposure to moderate hypoxia might have a beneficial effect in patients with CAD or heart failure. However, future research is needed to 577 578 define more precisely the indications, contraindications and modalities of pre-exposure to hypoxia in these patients. 579

580

Fig. 7 | **Processes of adaptation to hypoxia.** Exposure of individuals to acute hypoxia activates the expression of genes and reflex loops (such as chemoreflex-induced hyperventilation or tachycardia) to maintain an adequate supply of oxygen to the cells. Although some of these reactions to hypoxia can be harmful, desensitization (downregulation) processes occur to limit the negative effects of some of the acute reactions to hypoxia. A balance between activation and resistance processes leads to adaptation to hypoxia. Adapted with permission from ref. 174, © 2017 Elsevier Masson SAS, all rights reserved.

582 **References**

- Pace, N., Consolazio, W. V. & Lozner, E. L. The effect of transfusions of red blood cells on the
 hypoxia tolerance of normal men. *Science* 102, 589–591 (1945).
- Wiggers, C. J. Cardiac adaptations in acute progressive anoxia. Ann. Intern. Med. 14, 1237–1247 (1941).
- 587 3 Richalet, J.-P. The invention of hypoxia. J. Appl. Physiol. 130, 1573–1582 (2021).
- 4 Berner, R. A. Phanerozoic atmospheric oxygen: new results using the GEOCARBSULF model. *Am. J. Sci.* 309, 603–606 (2009).
- 5 Payne, J. L. et al. The evolutionary consequences of oxygenic photosynthesis: a body size
 perspective. *Photosynth. Res.* 107, 37–57 (2011).
- 592 6 Saugy, J. J. et al. Same performance changes after live high-train low in normobaric vs. hypobaric
 593 hypoxia. *Front. Physiol.* 7, 138 (2016).
- 594 7 Semenza, G. L. Regulation of oxygen homeostasis by hypoxia-inducible factor 1.*Physiology* 24, 97–
 595 106 (2009).
- Sommer, N., Strielkov, I., Pak, O. & Weissmann, N. Oxygen sensing and signal transduction in
 hypoxic pulmonary vasoconstriction. *Eur. Respir. J.* 47, 288–303 (2016).
- 598 9 Luks, A. et al. Ward, Milledge and West's High Altitude Medicine and Physiology 6th edn (CRC
 599 Press, 2021).
- 10 Wehrlin, J. P. & Hallén, J. Linear decrease in VO2max and performance with increasing altitude in
 endurance athletes. *Eur. J. Appl. Physiol.* 96, 404–412 (2006).
- 602 11 Richalet, J.-P. & Lhuissier, F. J. Aging, tolerance to high altitude, and cardiorespiratory response to
 603 hypoxia. *High Alt. Med. Biol.* 16, 117–124 (2015).
- 12 Dehnert, C. Identification of individuals susceptible to high-altitude pulmonary oedema at low
 altitude. *Eur. Respir. J.* 25, 545–551 (2005).
- 13 León-Velarde, F. & Richalet, J.-P. Respiratory control in residents at high altitude: physiology and
 pathophysiology. *High Alt. Med. Biol.* 7, 125–137 (2006).
- 14 Richalet, J.-P. in *Hypoxia: Translation in Progress* (eds Roach, R. C., Hackett, P. H. & Wagner, P.
 D.) Ch. 23, 343–356 (Springer, 2016).
- 610 15 Escourrou, P., Johnson, D. G. & Rowell, L. B. Hypoxemia increases plasma catecholamine
 611 concentrations in exercising humans. J. Appl. Physiol. 57, 1507–1511 (1984).
- 612 16 Calbet, J. A. L. Chronic hypoxia increases blood pressure and noradrenaline spillover in healthy
 613 humans. J. Physiol. 551, 379–386 (2003).
- 614 17 Hansen, J. & Sander, M. Sympathetic neural overactivity in healthy humans after prolonged exposure
 615 to hypobaric hypoxia. *J. Physiol.* 546, 921–929 (2003).
- 18 Kacimi, R. et al. Differential regulation of G protein expression in rat hearts exposed to chronic
 hypoxia. *Am. J. Physiol. Heart Circ. Physiol.* 269, H1865–H1873 (1995).
- 618 19 Boussi, L. & Frishman, W. H. β-Arrestin as a therapeutic target in heart failure. *Cardiol. Rev.*29,
 619 223–229 (2021).
- 20 Cornolo, J., Mollard, P., Brugniaux, J. V., Robach, P. & Richalet, J.-P. Autonomic control of the
 cardiovascular system during acclimatization to high altitude: effects of sildenafil. *J. Appl. Physiol.*97, 935–940 (2004).
- 623 21 Vogel, J. A. & Harris, C. W. Cardiopulmonary responses of resting man during early exposure to
 624 high altitude. *J. Appl. Physiol.* 22, 1124–1128 (1967).
- 625 22 Richalet, J. & Hermand, E. Modeling the oxygen transport to the myocardium at maximal exercise at
 626 high altitude. *Physiol. Rep.* 10, e15262 (2022).
- 627 23 Kacimi, R., Richalet, J. P. & Crozatier, B. Hypoxia-induced differential modulation of adenosinergic

- and muscarinic receptors in rat heart. J. Appl. Physiol. 75, 1123–1128 (1993).
- 629 24 León-Velarde, F. et al. Hypoxia- and normoxia-induced reversibility of autonomic control in Andean
 630 guinea pig heart. *J. Appl. Physiol.* 81, 2229–2234 (1996).
- 631 25 León-Velarde, F. et al. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or
 632 norepinephrine infusion. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 280, R274–R281 (2001).
- 26 Voelkel, N. F., Hegstrand, L., Reeves, J. T., McMurty, I. F. & Molinoff, P. B. Effects of hypoxia on
 density of beta-adrenergic receptors. *J. Appl. Physiol.* 50, 363–366 (1981).
- 635 27 Richalet, J. P. et al. Decreased cardiac response to isoproterenol infusion in acute and chronic
 636 hypoxia. J. Appl. Physiol. 65, 1957–1961 (1988).
- 637 28 Richalet, J. P. et al. MIBG scintigraphic assessment of cardiac adrenergic activity in response to
 638 altitude hypoxia. J. Nucl. Med. 31, 34–37 (1990).
- 639 29 Boushel, R. et al. Parasympathetic neural activity accounts for the lowering of exercise heart rate at
 640 high altitude. *Circulation* 104, 1785–1791 (2001).
- 30 Clar, C., Dorrington, K. L., Fatemian, M. & Robbins, P. A. Effects of 8 h of isocapnic hypoxia with
 and without muscarinic blockade on ventilation and heart rate in humans. *Exp. Physiol.* 86, 529–538
 (2001).
- 644 31 Hartley, L. H., Vogel, J. A. & Cruz, J. C. Reduction of maximal exercise heart rate at altitude and its
 645 reversal with atropine. *J. Appl. Physiol.* 36, 362–365 (1974).
- 32 Favret, F., Richalet, J.-P., Henderson, K. K., Germack, R. & Gonzalez, N. C. Myocardial adrenergic
 and cholinergic receptor function in hypoxia: correlation with O₂ transport in exercise. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 280, R730–R738 (2001).
- 649 33 Basnyat, B., Sill, D. & Gupta, V. Myocardial infarction or high-altitude pulmonary edema?
 650 *Wilderness Environ. Med.* 11, 196–198 (2000).
- 34 Liggett, S. B. et al. A GRK5 polymorphism that inhibits β-adrenergic receptor signaling is protective
 in heart failure. *Nat. Med.* 14, 510–517 (2008).
- 35 Reeves, J. T. et al. Operation Everest II: preservation of cardiac function at extreme altitude. *J. Appl. Physiol.* 63, 531–539 (1987).
- 36 Grover, R. F., Weil, J. V. & Reeves, J. T. Cardiovascular adaptation to exercise at high altitude.
 Exerc. Sport Sci. Rev. 14, 269–302 (1986).
- 37 Fukuda, T. et al. Effects of acute hypoxia at moderate altitude on stroke volume and cardiac output
 during exercise. *Int. Heart J.* 51, 170–175 (2010).
- 38 Boussuges, A. et al. Operation Everest III (Comex '97): modifications of cardiac function secondary
 to altitude-induced hypoxia: an echocardiographic and Doppler study. *Am. J. Respir. Crit. Care Med.*161, 264–270 (2000).
- 39 Ghofrani, H. A. et al. Sildenafil increased exercise capacity during hypoxia at low altitudes and at
 Mount Everest Base Camp: a randomized, double-blind, placebo-controlled crossover trial. *Ann. Intern. Med.* 141, 169 (2004).
- 40 Brugniaux, J. V. et al. Living high-training low: tolerance and acclimatization in elite endurance
 athletes. *Eur. J. Appl. Physiol.* 96, 66–77 (2006).
- 41 Holloway, C. J. et al. Cardiac response to hypobaric hypoxia: persistent changes in cardiac mass,
 function, and energy metabolism after a trek to Mt. Everest Base Camp. *FASEB J.* 25, 792–796
 (2011).
- 42 Brito, J. et al. Chronic intermittent hypoxia at high altitude exposure for over 12 years: assessment of
 hematological, cardiovascular, and renal effects. *High Alt. Med. Biol.* 8, 236–244 (2007).
- 43 Richalet, J.-P. et al. Chilean miners commuting from sea level to 4500 m: a prospective study. *High Alt. Med. Biol.* 3, 159–166 (2002).
- 44 Richalet, J.-P. Operation Everest III: COMEX '97. *High Alt. Med. Biol.* 11, 121–132 (2010).

- 45 Huez, S., Faoro, V., Guénard, H., Martinot, J.-B. & Naeije, R. Echocardiographic and tissue Doppler
 imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. *Am. J. Cardiol.* 103, 1605–1609 (2009).
- 46 Coustet, B., Lhuissier, F. J., Vincent, R. & Richalet, J.-P. Electrocardiographic changes during
 exercise in acute hypoxia and susceptibility to severe high-altitude illnesses. *Circulation* 131, 786–
 794 (2015).
- 47 Deussen, A., Ohanyan, V., Jannasch, A., Yin, L. & Chilian, W. Mechanisms of metabolic coronary
 flow regulation. *J. Mol. Cell Cardiol.* 52, 794–801 (2012).
- 48 Grubbström, J., Berglund, B. & Kaijser, L. Myocardial oxygen supply and lactate metabolism during
 marked arterial hypoxaemia. *Acta Physiol. Scand.* 149, 303–310 (1993).
- 49 Wyss, C. A. et al. Influence of altitude exposure on coronary flow reserve. *Circulation* 108, 1202–
 1207 (2003).
- 50 Hainsworth, R., Drinkhill, M. J. & Rivera-Chira, M. The autonomic nervous system at high altitude.
 Clin. Auton. Res. 17, 13–19 (2007).
- 51 Bruno, R. M. et al. Sympathetic regulation of vascular function in health and disease. *Front. Physiol.* 3, 284 (2012).
- 52 Bilo, G. et al. Effects of selective and nonselective beta-blockade on 24-h ambulatory blood pressure
 under hypobaric hypoxia at altitude. *J. Hypertens.* 29, 380–387 (2011).
- 53 Parati, G. et al. Effects of acetazolamide on central blood pressure, peripheral blood pressure, and
 arterial distensibility at acute high altitude exposure. *Eur. Heart J.* 34, 759–766 (2013).
- 54 Parati, G. et al. Changes in 24 h ambulatory blood pressure and effects of angiotensin II receptor
 blockade during acute and prolonged high-altitude exposure: a randomized clinical trial. *Eur. Heart J.*35, 3113–3122 (2014).
- 55 Casey, D. P. & Joyner, M. J. Compensatory vasodilatation during hypoxic exercise: mechanisms
 responsible for matching oxygen supply to demand. *J. Physiol.* 590, 6321–6326 (2012).
- 56 Richalet, J.-P., Larmignat, P., Poitrine, E., Letournel, M. & Canouï-Poitrine, F. Physiological risk
 factors for severe high-altitude illness: a prospective cohort study. *Am. J. Respir. Crit. Care Med.*185, 192–198 (2012).
- 57 Canouï-Poitrine, F. et al. Risk prediction score for severe high altitude illness: a cohort study. *PLoS One* 9, e100642 (2014).
- 58 Richalet, J.-P. et al. Validation of a score for the detection of subjects with high risk for severe high altitude illness. *Med. Sci. Sports Exercise* 53, 1294–1302 (2021).
- 59 Vogel, J. A., Hansen, J. E. & Harris, C. W. Cardiovascular responses in man during exhaustive work
 at sea level and high altitude. *J. Appl. Physiol.* 23, 531–539 (1967).
- 60 Winkler, L., Lhuissier, F. J. & Richalet, J.-P. Systemic blood pressure at exercise in hypoxia in
 hypertensive and normotensive patients. *J. Hypertens.* 35, 2402–2410 (2017).
- 61 Mallet, R. T., Burtscher, J., Richalet, J.-P., Millet, G. P. & Burtscher, M. Impact of high altitude on
 cardiovascular health: current perspectives. *Vasc. Health Risk Manag.* 17, 317–335 (2021).
- 62 Savard, G. K., Areskog, N. H. & Saltin, B. Cardiovascular response to exercise in humans following
 acclimatization to extreme altitude. *Acta Physiol. Scand.* 154, 499–509 (1995).
- 63 Wolfel, E. E. et al. Oxygen transport during steady-state submaximal exercise in chronic hypoxia. *J. Appl. Physiol.* 70, 1129–1136 (1991).
- 64 Wolfel, E. E. et al. O₂ extraction maintains O₂ uptake during submaximal exercise with betaadrenergic blockade at 4,300 m. *J. Appl. Physiol.* 85, 1092–1102 (1998).
- 65 Zhou, Q. et al. A randomly-controlled study on the cardiac function at the early stage of return to the
 plains after short-term exposure to high altitude. *PLoS ONE* 7, e31097 (2012).
- 721 66 Keyes, L. E. et al. Blood pressure and altitude: an observational cohort study of hypertensive and

- nonhypertensive Himalayan trekkers in Nepal. *High Alt. Med. Biol.* 18, 267–277 (2017).
- 67 Tremblay, J. C. et al. Endothelial function and shear stress in hypobaric hypoxia: time course and
 impact of plasma volume expansion in men. *Am. J. Physiol. Heart Circ. Physiol.* 319, H980–H994
 (2020).
- 68 Rieger, M. G. et al. Cardiopulmonary and cerebrovascular acclimatization in children and adults at
 3800 m. *J. Physiol.* 600, 4849–4863 (2022).
- 69 Talbot, N. P., Balanos, G. M., Dorrington, K. L. & Robbins, P. A. Two temporal components within
 the human pulmonary vascular response to approximately 2 h of isocapnic hypoxia. *J. Appl. Physiol.*98, 1125–1139 (2005).
- 731 70 Groves, B. M. et al. Operation Everest II: elevated high-altitude pulmonary resistance unresponsive to
 732 oxygen. J. Appl. Physiol. 63, 521–530 (1987).
- 733 71 Moudgil, R., Michelakis, E. D. & Archer, S. L. Hypoxic pulmonary vasoconstriction. J. Appl.
 734 *Physiol.* 98, 390–403 (2005).
- 735 72 Stenmark, K. R., Fagan, K. A. & Frid, M. G. Hypoxia-induced pulmonary vascular remodeling:
 736 cellular and molecular mechanisms. *Circ. Res.* 99, 675–691 (2006).
- 737 73 Richalet, J.-P. & Pichon, A. in *The Right Heart* (eds. Gaine, S. P., Naeije, R. & Peacock, A. J.) 117–
 738 129 (Springer, 2014).
- 739 74 Naeije, R. et al. Pulmonary artery pressure limits exercise capacity at high altitude. *Eur. Respir. J.* 36, 1049–1055 (2010).
- 75 Hildebrandt, W., Ottenbacher, A., Schuster, M., Swenson, E. R. & Bärtsch, P. Diuretic effect of
 hypoxia, hypocapnia, and hyperpnea in humans: relation to hormones and O₂ chemosensitivity. J. *Appl. Physiol.* 88, 599–610 (2000).
- 744 76 Olsen, N. V. et al. Effects of acute hypoxia on renal and endocrine function at rest and during graded
 745 exercise in hydrated subjects. *J. Appl. Physiol.* 73, 2036–2043 (1992).
- 746 77 Steele, A. R. et al. Global REACH 2018: renal oxygen delivery is maintained during early
 747 acclimatization to 4,330 m. *Am. J. Physiol. Renal Physiol.* 319, F1081–F1089 (2020).
- 748 78 Singh, M. V. et al. Blood gases, hematology, and renal blood flow during prolonged mountain
 749 sojourns at 3500 and 5800 m. *Aviat. Space Environ. Med.* 74, 533–536 (2003).
- 750 79 Richalet, J. P. et al. Control of erythropoiesis in humans during prolonged exposure to the altitude of
 6,542 m. *Am. J. Physiol.* 266, R756–R764 (1994).
- 80 Lozano, R. & Monge, C. Renal function in high-altitude natives and in natives with chronic mountain
 sickness. *J. Appl. Physiol.* 20, 1026–1027 (1965).
- 81 Ainslie, P. N. & Subudhi, A. W. Cerebral blood flow at high altitude. *High Alt. Med. Biol.* 15, 133–140 (2014).
- 82 Ter Minassian, A. et al. Doppler study of middle cerebral artery blood flow velocity and cerebral autoregulation during a simulated ascent of Mount Everest. *Wilderness Environ. Med.* 12, 175–183 (2001).
- 83 Hanada, A., Sander, M. & González-Alonso, J. Human skeletal muscle sympathetic nerve activity,
 heart rate and limb haemodynamics with reduced blood oxygenation and exercise. *J. Physiol.* 551,
 635–647 (2003).
- 762 84 Casey, D. P. et al. Nitric oxide contributes to the augmented vasodilatation during hypoxic exercise.
 763 *J. Physiol.* 588, 373–385 (2010).
- 85 Wilkins, B. W. et al. Exercise intensity-dependent contribution of β-adrenergic receptor-mediated
 vasodilatation in hypoxic humans. *J. Physiol.* 586, 1195–1205 (2008).
- 86 Pohl, U. & Busse, R. Hypoxia stimulates release of endothelium-derived relaxant factor. *Am. J. Physiol. Heart Circ. Physiol.* 256, H1595–H1600 (1989).
- 768 87 Kooijman, M. et al. Flow-mediated dilatation in the superficial femoral artery is nitric oxide mediated

- in humans: FMD in the SFA is nitric oxide mediated. J. Physiol. 586, 1137–1145 (2008).
- 88 Mortensen, S. P., Nyberg, M., Thaning, P., Saltin, B. & Hellsten, Y. Adenosine contributes to blood
 flow regulation in the exercising human leg by increasing prostaglandin and nitric oxide formation. *Hypertension* 53, 993–999 (2009).
- 89 Azad, P. et al. High-altitude adaptation in humans: from genomics to integrative physiology. *J. Mol. Med.* 95, 1269–1282 (2017).
- 90 Moore, L. G., Armaza, F., Villena, M. & Vargas, E. Comparative aspects of high-altitude adaptation
 in human populations. *Adv. Exp. Med. Biol.* 475, 45–62 (2000).
- 91 Hunley, K., Gwin, K. & Liberman, B. A Reassessment of the impact of European contact on the structure of Native American genetic diversity. *PLoS ONE* 11, e0161018 (2016).
- 92 Hultgren, H. N. & Miller, H. Human heart weight at high altitude. *Circulation* 35, 207–218 (1967).
- 93 Antezana, A. et al. Pulmonary hypertension in high-altitude chronic hypoxia: response to nifedipine.
 Eur. Respir. J. 12, 1181–1185 (1998).
- 94 León-Velarde, F., Villafuerte, F. C. & Richalet, J.-P. Chronic mountain sickness and the heart. *Prog. Cardiovasc. Dis.* 52, 540–549 (2010).
- 95 Maignan, M. et al. Pulmonary pressure and cardiac function in chronic mountain sickness patients.
 Chest 135, 499–504 (2009).
- 96 Corante, N. et al. Excessive erythrocytosis and cardiovascular risk in Andean highlanders. *High Alt. Med. Biol.* 19, 221–231 (2018).
- 97 Pratali, L. et al. RV contractility and exercise-induced pulmonary hypertension in chronic mountain
 sickness. *JACC Cardiovasc. Imag.* 6, 1287–1297 (2013).
- 98 Severinghaus, J. W., Bainton, C. R. & Carcelen, A. Respiratory insensitivity to hypoxia in chronically
 hypoxic man. *Respir. Physiol.* 1, 308–334 (1966).
- 99 Antezana, A., Richalet, J., Antezana, G., Spielvogel, H. & Kacimi, R. Adrenergic aystem in high
 altitude residents. *Int. J. Sports Med.* 13, S96–S100 (1992).
- Richalet, J.-P. et al. Acetazolamide for Monge's disease: efficiency and tolerance of 6-month
 treatment. Am. J. Respir. Crit. Care Med. 177, 1370–1376 (2008).
- Aryal, N., Weatherall, M., Bhatta, Y. K. D. & Mann, S. Blood pressure and hypertension in adults
 permanently living at high altitude: a systematic review and meta-analysis. *High Alt. Med. Biol.* 17, 185–193 (2016).
- 102 Sun, S. Epidemiology of hypertension on the Tibetan plateau. *Hum. Biol.* 58, 507–515 (1986).
- Hancco, I. et al. Excessive erythrocytosis and chronic mountain sickness in dwellers of the highest
 city in the world. *Front. Physiol.* 11, 773 (2020).
- 104 Coombs, G. B. et al. Global Reach 2018: nitric oxide-mediated cutaneous vasodilation is reduced
 in chronic, but not acute, hypoxia independently of enzymatic superoxide formation. *Free Radic*. *Biol. Med.* 172, 451–458 (2021).
- Beall, C. M., Laskowski, D. & Erzurum, S. C. Nitric oxide in adaptation to altitude. *Free Radic*. *Biol. Med.* 52, 1123–1134 (2012).
- Tremblay, J. C. et al. Global Reach 2018: high blood viscosity and hemoglobin concentration
 contribute to reduced flow-mediated dilation in high-altitude excessive erythrocytosis. *Hypertension* 73, 1327–1335 (2019).
- 810 107 Basak, N. & Thangaraj, K. High-altitude adaptation: role of genetic and epigenetic factors. J.
 811 *Biosci.* 46, 107 (2021).
- 812 108 Beall, C. M. Andean, Tibetan, and Ethiopian patterns of adaptation to high-altitude hypoxia.
 813 *Integr. Comp. Biol.* 46, 18–24 (2006).
- 814 109 Beall, C. M. et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin

- 815 concentration in Tibetan highlanders. *Proc. Natl Acad. Sci. USA* 107, 11459–11464 (2010).
- Bigham, A. et al. Identifying signatures of natural selection in Tibetan and Andean populations
 using dense genome scan data. *PLoS Genet.* 6, e1001116 (2010).
- 818 111 Simonson, T. S. et al. Genetic evidence for high-altitude adaptation in Tibet. *Science* 329, 72–75
 819 (2010).
- 820 112 Sharma, V., Varshney, R. & Sethy, N. K. Human adaptation to high altitude: a review of
 821 convergence between genomic and proteomic signatures. *Hum. Genomics* 16, 21 (2022).
- 822 113 Scheinfeldt, L. B. et al. Genetic adaptation to high altitude in the Ethiopian highlands. *Genome*823 *Biol.* 13, R1 (2012).
- 824 114 Espinoza, J. R. et al. Vascular endothelial growth factor-A is associated with chronic mountain
 825 sickness in the Andean population. *High Alt. Med. Biol.* 15, 146–154 (2014).
- B26 115 Gazal, S. et al. The genetic architecture of chronic mountain sickness in Peru. *Front. Genet.* 10,
 B27 690 (2019).
- 828 116 Zhou, D. et al. Whole-genome sequencing uncovers the genetic basis of chronic mountain
 829 sickness in Andean highlanders. *Am. J. Hum. Genet.* 93, 452–462 (2013).
- Ravenhill, T. H. Some experiences of mountain sickness in the Andes. J. Trop. Med. Hyg. 16,
 313–320 (1913).
- Houston, C. S. Acute pulmonary edema of high altitude. *N. Engl. J. Med.* 263, 478–480 (1960).
- Richalet, J.-P., Jeny, F., Callard, P. & Bernaudin, J.-F. High altitude pulmonary edema: the
 intercellular network hypothesis. *Am. J. Physiol. Lung Cell. Mol. Physiol.* https://doi.
 org/10.1152/ajplung.00292.2022 (2023).
- B36 120 Donegani, E. et al. Pre-existing cardiovascular conditions and high altitude travel. *Travel Med.* B37 *Infect. Dis.* 12, 237–252 (2014).
- Luks, A. M. & Hackett, P. H. Medical conditions and high-altitude travel. *N. Engl. J. Med.* 386, 364–373 (2022).
- Parati, G. et al. Clinical recommendations for high altitude exposure of individuals with preexisting cardiovascular conditions: a joint statement by the European Society of Cardiology, the
 Council on Hypertension of the European Society of Cardiology, the European Society of
 Hypertension, the International Society of Mountain Medicine, the Italian Society of Hypertension
 and the Italian Society of Mountain Medicine. *Eur. Heart J.* 39, 1546–1554 (2018).
- Mollard, P. et al. Determinants of maximal oxygen uptake in moderate acute hypoxia in endurance
 athletes. *Eur. J. Appl. Physiol.* 100, 663–673 (2007).
- 847 124 Schmid, J.-P. Safety and exercise tolerance of acute high altitude exposure (3454 m) among
 848 patients with coronary artery disease. *Heart* 92, 921–925 (2006).
- 849 125 de Vries, S. T. et al. Impact of high altitude on echocardiographically determined cardiac
 850 morphology and function in patients with coronary artery disease and healthy controls. *Eur. J.*851 *Echocardiogr.* 11, 446–450 (2010).
- Morgan, B. J., Alexander, J. K., Nicoli, S. A. & Brammell, H. L. The patient with coronary heart
 disease at altitude: observations during acute exposure to 3100 meters. *J. Wilderness Med.* 1, 147–
 153 (1990).
- 855 127 Salvi, P. et al. Changes in subendocardial viability ratio with acute high-altitude exposure and
 856 protective role of acetazolamide. *Hypertension* 61, 793–799 (2013).
- Agostoni, P. et al. Effects of simulated altitude-induced hypoxia on exercise capacity in patients
 with chronic heart failure. *Am. J. Med.* 109, 450–455 (2000).
- 859 129 Schmid, J.-P. et al. Short-term high altitude exposure at 3454 m is well tolerated in patients with
 860 stable heart failure. *Eur. J. Heart Fail.* 17, 182–186 (2015).
- 861 130 Vona, M. et al. Effects of altitude on effort tolerance in non-acclimatized patients with ischemic

- left ventricular dysfunction. *Eur. J. Cardiovasc. Prev. Rehabil.* 13, 617–624 (2006).
- 863 131 Staempfli, R. et al. Cardiopulmonary adaptation to short-term high altitude exposure in adult
 864 Fontan patients. *Heart* 102, 1296–1301 (2016).
- Allemann, Y. et al. Patent foramen ovale and high-altitude pulmonary edema. *JAMA* 296, 2954–
 2958 (2006).
- Bilo, G. et al. Ambulatory blood pressure in untreated and treated hypertensive patients at high
 altitude: the High Altitude Cardiovascular Research-Andes study. *Hypertension* 65, 1266–1272
 (2015).
- 870 134 Wu, T.-Y. et al. Who should not go high: chronic disease and work at altitude during construction
 871 of the Qinghai-Tibet railroad. *High Alt. Med. Biol.* 8, 88–107 (2007).
- Hackett, P. H. et al. High-altitude pulmonary edema in persons without the right pulmonary artery.
 N. Engl. J. Med. 302, 1070–1073 (1980).
- Richalet, J.-P., Chenivesse, C., Larmignat, P. & Meille, L. High altitude pulmonary edema, Down
 syndrome, and obstructive sleep apneas. *High Alt. Med. Biol.* 9, 179–181 (2008).
- Lichtblau, M. et al. Altitude travel in patients with pulmonary hypertension: randomized pilot-trial
 evaluating nocturnal oxygen therapy. *Front. Med.* 7, 502 (2020).
- 878 138 Verges, S., Chacaroun, S., Godin-Ribuot, D. & Baillieul, S. Hypoxic conditioning as a new therapeutic modality. *Front. Pediatr.* 3, 58 (2015).
- Burtscher, J., Mallet, R. T., Burtscher, M. & Millet, G. P. Hypoxia and brain aging:
 neurodegeneration or neuroprotection? *Ageing Res. Rev.* 68, 101343 (2021).
- 140 Moncayo, J., de Freitas, G. R., Bogousslavsky, J., Altieri, M. & van Melle, G. Do transient
 ischemic attacks have a neuroprotective effect? *Neurology* 54, 2089–2094 (2000).
- 141 Zhang, Y. et al. Hypoxia conditioning enhances neuroprotective effects of aged human bone
 marrow mesenchymal stem cell-derived conditioned medium against cerebral ischemia in vitro. *Brain Res.* 1725, 146432 (2019).
- Serebrovskaya, T. V., Manukhina, E. B., Smith, M. L., Downey, H. F. & Mallet, R. T. Intermittent
 hypoxia: cause of or therapy for systemic hypertension? *Exp. Biol. Med.* 233, 627–650 (2008).
- Mateika, J. H. & Syed, Z. Intermittent hypoxia, respiratory plasticity and sleep apnea in humans:
 present knowledge and future investigations. *Respir. Physiol. Neurobiol.* 188, 289–300 (2013).
- Hobbins, L., Hunter, S., Gaoua, N. & Girard, O. Normobaric hypoxic conditioning to maximize
 weight loss and ameliorate cardio-metabolic health in obese populations: a systematic review. *Am. J. Physiol. Regul. Integr. Comp. Physiol.* 313, R251–R264 (2017).
- Klug, L. et al. Normobaric hypoxic conditioning in men with metabolic syndrome. *Physiol. Rep.*6, e13949 (2018).
- Burtscher, M. Lower mortality rates in those living at moderate altitude. *Aging* 8, 2603–2604 (2016).
- Ezzati, M. et al. Altitude, life expectancy and mortality from ischaemic heart disease, stroke,
 COPD and cancers: national population-based analysis of US counties. *J. Epidemiol. Community Health* 66, e17 (2012).
- 148 Faeh, D., Gutzwiller, F. & Bopp, M. Lower mortality from coronary heart disease and stroke at
 higher altitudes in Switzerland. *Circulation* 120, 495–501 (2009).
- 149 Lopez-Pascual, A., Arévalo, J., Martínez, J. A. & González-Muniesa, P. Inverse association
 between metabolic syndrome and altitude: a cross-sectional study in an adult population of Ecuador. *Front. Endocrinol.* 9, 658 (2018).
- Woolcott, O. O. et al. Inverse association between diabetes and altitude: a cross-sectional study in
 the adult population of the United States: diabetes at high altitude. *Obesity* 22, 2080–2090 (2014).
- 908 151 Coté, T. R., Stroup, D. F., Dwyer, D. M., Horan, J. M. & Peterson, D. E. Chronic obstructive

- 909 pulmonary disease mortality: a role for altitude. *Chest* 103, 1194–1197 (1993).
- 910 152 Anderson, J. D. & Honigman, B. The effect of altitude-induced hypoxia on heart disease: do
 911 acute, intermittent, and chronic exposures provide cardioprotection? *High Alt. Med. Biol.* 12, 45–55
 912 (2011).
- Sanchis-Gomar, F., Viña, J. & Lippi, G. Intermittent hypobaric hypoxia applicability in
 myocardial infarction prevention and recovery. J. Cell Mol. Med. 16, 1150–1154 (2012).
- 915 154 del Pilar Valle, M. et al. Improvement of myocardial perfusion in coronary patients after
 916 intermittent hypobaric hypoxia. J. Nucl. Cardiol. 13, 69–74 (2006).
- 917 155 Burtscher, M. et al. Intermittent hypoxia increases exercise tolerance in elderly men with and
 918 without coronary artery disease. *Int. J. Cardiol.* 96, 247–254 (2004).
- 919 156 Saeed, O. et al. Improved exercise performance and skeletal muscle strength after simulated
 920 altitude exposure: a novel approach for patients with chronic heart failure. J. Card. Fail. 18, 387–391
 921 (2012).
- 157 Cai, Z. et al. Complete loss of ischaemic preconditioning-induced cardioprotection in mice with
 partial deficiency of HIF-1. *Cardiovasc. Res.* 77, 463–470 (2007).
- Huang, T. et al. Hypoxia-inducible factor-1α upregulation in microglia following hypoxia protects
 against ischemia-induced cerebral infarction. *NeuroReport* 25, 1122–1128 (2014).
- Belaidi, E., Beguin, P. C., Levy, P., Ribuot, C. & Godin-Ribuot, D. Prevention of HIF-1 activation
 and iNOS gene targeting by low-dose cadmium results in loss of myocardial hypoxic preconditioning
 in the rat. *Am. J. Physiol. Heart Circ. Physiol.* 294, H901–H908 (2008).
- Park, A.-M., Nagase, H., Vinod Kumar, S. & Suzuki, Y. J. Acute intermittent hypoxia activates
 myocardial cell survival signaling. *Am. J. Physiol. Heart Circ. Physiol.* 292, H751–H757 (2007).
- 931 161 Joyeux-Faure, M., Godin-Ribuot, D. & Ribuot, C. Erythropoietin and myocardial protection:
 932 what's new? *Fundam. Clin. Pharmacol.* 19, 439–446 (2005).
- 162 Moore, E. & Bellomo, R. Erythropoietin (EPO) in acute kidney injury. Ann. Intensive Care 1, 3
 (2011).
- El'chaninova, S. A., Korenyak, N. A., Pavlovskaya, L. I., Smagina, I. V. & Makarenko, V. V. The
 effect of interval hypoxic hypoxia on the vascular endothelial growth factor and basic fibroblast
 growth factor concentrations in the peripheral blood. *Hum. Physiol.* 30, 705–707 (2004).
- 164 Maulik, N. & Das, D. K. Redox signaling in vascular angiogenesis. *Free Radic. Biol. Med.* 33, 1047–1060 (2002).
- Ray, P. S., Estrada-Hernandez, T., Sasaki, H., Zhu, L. & Maulik, N. Early effects of hypoxia/
 reoxygenation on VEGF, ang-1, ang-2 and their receptors in the rat myocardium: implications for
 myocardial angiogenesis. *Mol. Cell Biochem.* 213, 145–153 (2000).
- 943 166 Dempsey, J. A., Veasey, S. C., Morgan, B. J. & O'Donnell, C. P. Pathophysiology of sleep apnea.
 944 *Physiol. Rev.* 90, 47–112 (2010).
- Mallet, R. T., Manukhina, E. B., Ruelas, S. S., Caffrey, J. L. & Downey, H. F. Cardioprotection
 by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. *Am. J. Physiol. Heart Circ. Physiol.* 315, H216–H232 (2018).
- 168 Navarrete-Opazo, A. & Mitchell, G. S. Therapeutic potential of intermittent hypoxia: a matter of
 dose. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R1181–R1197 (2014).
- Millet, G. P. et al. Commentaries on viewpoint: time for a new metric for hypoxic dose? J. Appl. *Physiol.* 121, 356–358 (2016).
- Richalet, J.-P. Oxygen sensors in the organism: examples of regulation under altitude hypoxia in mammals. *Comp. Biochem. Physiol. A Physiol.* 118, 9–14 (1997).
- 171 Kanai, M., Nishihara, F., Shiga, T., Shimada, H. & Saito, S. Alterations in autonomic nervous
 control of heart rate among tourists at 2700 and 3700 m above sea level. *Wilderness Environ. Med.*

956 12, 8–12 (2001).

- Heistad, D. D. & Abboud, F. M. Dickinson W. Richards lecture: circulatory adjustments to
 hypoxia. *Circulation* 61, 463–470 (1980).
- Mortensen, S. P., González-Alonso, J., Damsgaard, R., Saltin, B. & Hellsten, Y. Inhibition of
 nitric oxide and prostaglandins, but not endothelial-derived hyperpolarizing factors, reduces blood
 flow and aerobic energy turnover in the exercising human leg: effect of triple blockade on exercise
 hyperaemia. J. Physiol. 581, 853–861 (2007).
- 963 174 Richalet, J.-P. & Herry, J.-P. *Médecine de Montagne: Alpinisme et Sports de Montagne* 5th edn,
 964 Vol. 72 (Elsevier Masson, 2017).

965